A Hybrid Method for Image Segmentation Based on Artificial Fish Swarm Algorithm and Fuzzyc-Means Clustering
نویسندگان
چکیده
منابع مشابه
A Hybrid Method for Image Segmentation Based on Artificial Fish Swarm Algorithm and Fuzzy c-Means Clustering
Image segmentation plays an important role in medical image processing. Fuzzy c-means (FCM) clustering is one of the popular clustering algorithms for medical image segmentation. However, FCM has the problems of depending on initial clustering centers, falling into local optimal solution easily, and sensitivity to noise disturbance. To solve these problems, this paper proposes a hybrid artifici...
متن کاملA Hybrid Clustering Algorithm Based on Improved Artificial Fish Swarm
K-medoids clustering algorithm is used to classify data, but the approach is sensitive to the initial selection of the centers and the divided cluster quality is not high. Basic Artificial Fish Swarm Algorithm is a new type of heuristic swarm intelligence algorithm, but optimization is difficult to get a very high precision due to the randomness of the artificial fish behavior. A novel clusteri...
متن کاملAn image threshold segmentation method based on multi-behaviour global artificial fish swarm algorithm
Firstly, this paper describes how the histogram analysis method pre-processes the images to be segmented. Then is makes a detailed analysis of the working principles and behaviour pattern of basic artificial fish swarm algorithm (AFSA); dissects the defects of AFSA in principle and proposes an improved AFSA with global convergence. Finally, it presents the main steps of image threshold segmenta...
متن کاملA Hybrid Time Series Clustering Method Based on Fuzzy C-Means Algorithm: An Agreement Based Clustering Approach
In recent years, the advancement of information gathering technologies such as GPS and GSM networks have led to huge complex datasets such as time series and trajectories. As a result it is essential to use appropriate methods to analyze the produced large raw datasets. Extracting useful information from large data sets has always been one of the most important challenges in different sciences,...
متن کاملA image segmentation algorithm based on differential evolution particle swarm optimization fuzzy c-means clustering
This paper presents a hybrid differential evolution, particle swarm optimization and fuzzy c-means clustering algorithm called DEPSO-FCM for image segmentation. By the use of the differential evolution (DE) algorithm and particle swarm optimization to solve the FCM image segmentation influenced by the initial cluster centers and easily into a local optimum. Empirical results show that the propo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational and Mathematical Methods in Medicine
سال: 2015
ISSN: 1748-670X,1748-6718
DOI: 10.1155/2015/120495